This project is an attempt to use modern deep learning techniques to automatically colorize black and white photos.http://tinyclouds.org/
Ryan Dahl
This project is an attempt to use modern deep learning techniques to automatically colorize black and white photos.http://tinyclouds.org/
Ryan Dahl
Nihonshock.com has offered and will continue to offer the digital version of its Basic Japanese cheat sheet as a free resource for Japanese learners.
Brotli is a generic-purpose lossless compression algorithm that compresses data using a combination of a modern variant of the LZ77 algorithm, Huffman coding and 2nd order context modeling, with a compression ratio comparable to the best currently available general-purpose compression methods. It is similar in speed with deflate but offers more dense compression.
Zopfli Compression Algorithm is a compression library programmed in C to perform very good, but slow, deflate or zlib compression.
While Zopfli is Deflate-compatible, Brotli is a whole new data format. This new format allows us to get 20–26% higher compression ratios over Zopfli.
FST というのは Finite State Transducer (有限状態変換機) の略で,有限オートマトンに出力がついたものです.変換機とか言うと小難しい感じがするかもしれませんが,文字列を入力として,文字列を返す単純な機構です.(機能としては map[string]string みたいなものです).
Very low footprint JSON parser written in portable ANSI C.
Runtime Optionsコメント付きのJSONを扱うことができる、C/C++言語用のJSONパーサのソースコード。
settings |= json_enable_comments;
Enables C-style // line and /* block */ comments.
Cedar implements an updatable double-array trie [1,2,3], which offers fast update/lookup for skewed queries in real-world data, e.g., counting words in text or mining conjunctive features in a classifier.
量子アニーリング(Quantum annealing)は,量子効果を制御して,多変数1価関数(目的関数)の最小値を探す問題(最適化問題)を解く手法である。 パターン認識,自然言語処理,医療診断,金融商品開発その他への応用を持つ機械学習を始めとする多くの重要な課題が最適化問題として定式化できるため,最適化問題の効率的な解法は社会的に大きなインパクトを持つ。
neural-network-papers Table of Contents Other Lists Surveys Books Datasets Pretrained Models Programming Frameworks Learning to Compute Natural Language Processing Convolutional Neural Networks Recurrent Neural Networks Convolutional Recurrent Neural Networks Adversarial Neural Networks Autoencoders Restricted Boltzmann Machines Biologically Plausible Learning Supervised Learning Unsupervised Learning Reinforcement Learning Theory Quantum Computing Training Innovations Parallel Training Weight Compression Numerical Precision Numerical Optimization Motion Planning Simulation Hardware Cognitive Architectures Computational Creativity Cryptography Distributed Computing Clustering
Based on https://github.com/robertsdionne/neural-network-papers
CNTK, the Computational Network Toolkit by Microsoft Research, is a unified deep-learning toolkit
CNTK allows to easily realize and combine popular model types such as feed-forward DNNs, convolutional nets (CNNs), and recurrent networks (RNNs/LSTMs). It implements stochastic gradient descent (SGD, error backpropagation) learning with automatic differentiation and parallelization across multiple GPUs and servers.Microsoft Research による、Windows と Linux に対応した deep learning のツールキット。
In this work we define a new methodology that resolves this bottleneck and provides large scale supervised reading comprehension data.
The Impatient Reader文書を学習して、穴埋め問題を解く。Impatient Reader と Attentive Reader の比較。
The Attentive Reader is able to focus on the passages of a context document that are most likely to inform the answer to the query. We can go further by equipping the model with the ability to reread from the document as each query token is read.
Dataset of Japanese task対話ツイートのツイートIDのみのペア。ツイート本文はなし。
The input data will be those randomly sampled from tweets in the year 2015. The pool of tweets (the target for extraction) is the randomly sampled tweet pairs (mention-reply pairs) in the year 2014. The size of the pool is just over one million; that is 500K pairs.
The following data will be provided from the organizers:
(1) Twitter data (by using their IDs) 1M in size
(2) Development data. Input samples and output samples annotated with reference labels. Here, the number of annotators is ten.
ConclusionLisbon Machine Learning School 2015 のスライド。トピックは自然言語処理。
Summary
* supervised machine reading is a viable research direction with the available data,
* LSTM based recurrent networks constantly surprise with their ability to encode dependencies in sequences,
* attention is a very effective and exible modelling technique.
Future directions
* more and better data, corpus querying, and cross document queries,
* recurrent networks incorporating long term and working memory are well suited to NLU task.
Christopher D. Manning
Stanford University
MIT Press Journals - Computational Linguistics - Early Access - Citation
Deep Learningを勉強するにあたって内容がまとまっている教材についてリスト化しました。
Marvin was born to be hacked, relying on few dependencies and basic C++. All code lives in two files (marvin.hpp and marvin.cu) and all numbers take up two bytes (FP16).
Marvin’s life depends on an NVIDIA GPU with CUDA 7.5 and cuDNN 3.https://github.com/PrincetonVision/marvin/
Marvin is a GPU-only neural network framework made with simplicity, hackability, speed, memory consumption, and high dimensional data in mind.
The MIT License (MIT)
Copyright (c) 2015 Princeton Vision Group
In this post I’ll try to summarize what CNNs are, and how they’re used in NLP.
Code Excited Linear Prediction(CELP、セルプ)は、1985年に米AT&Tの M.R. Schroeder と B.S. Atal が提案した音声符号化アルゴリズム。携帯電話の音声圧縮のベースとなっているアルゴリズムらしい。