neural-network-papers Table of Contents Other Lists Surveys Books Datasets Pretrained Models Programming Frameworks Learning to Compute Natural Language Processing Convolutional Neural Networks Recurrent Neural Networks Convolutional Recurrent Neural Networks Adversarial Neural Networks Autoencoders Restricted Boltzmann Machines Biologically Plausible Learning Supervised Learning Unsupervised Learning Reinforcement Learning Theory Quantum Computing Training Innovations Parallel Training Weight Compression Numerical Precision Numerical Optimization Motion Planning Simulation Hardware Cognitive Architectures Computational Creativity Cryptography Distributed Computing Clustering
2015-12-24
robertsdionne/neural-network-papers · GitHub
https://github.com/robertsdionne/neural-network-papers
Neural network paper list | Eniod's Blog
https://haduonght.wordpress.com/2015/12/23/neural-network-paper-list/
Based on https://github.com/robertsdionne/neural-network-papers
2015-12-12
Computational Network Toolkit (CNTK) - Home
https://cntk.codeplex.com/
下記ページに速度性能を比較した記事がある。
Microsoft Computational Network Toolkit offers most efficient distributed deep learning computational performance
http://blogs.technet.com/b/inside_microsoft_research/archive/2015/12/07/microsoft-computational-network-toolkit-offers-most-efficient-distributed-deep-learning-computational-performance.aspx
CNTK, the Computational Network Toolkit by Microsoft Research, is a unified deep-learning toolkit
CNTK allows to easily realize and combine popular model types such as feed-forward DNNs, convolutional nets (CNNs), and recurrent networks (RNNs/LSTMs). It implements stochastic gradient descent (SGD, error backpropagation) learning with automatic differentiation and parallelization across multiple GPUs and servers.Microsoft Research による、Windows と Linux に対応した deep learning のツールキット。
下記ページに速度性能を比較した記事がある。
Microsoft Computational Network Toolkit offers most efficient distributed deep learning computational performance
http://blogs.technet.com/b/inside_microsoft_research/archive/2015/12/07/microsoft-computational-network-toolkit-offers-most-efficient-distributed-deep-learning-computational-performance.aspx
2015-12-02
[1506.03340] Teaching Machines to Read and Comprehend
http://arxiv.org/abs/1506.03340
スライドはこの記事を参照。
In this work we define a new methodology that resolves this bottleneck and provides large scale supervised reading comprehension data.
The Impatient Reader文書を学習して、穴埋め問題を解く。Impatient Reader と Attentive Reader の比較。
The Attentive Reader is able to focus on the passages of a context document that are most likely to inform the answer to the query. We can go further by equipping the model with the ability to reread from the document as each query token is read.
スライドはこの記事を参照。